DIFFUSION OF IMPURITIES IN THE SOLID PHASE
DURING ORIENTED CRYSTALLIZATION

L. A. Goryainov UDC 532.72:536.421

The one-dimensional problem of impurity diffusion in a variable-length solid rod is solved
-approximately by the integral method, Results are shown of typical calculations on the
basis of the derived formulas.

When a crystal is grown by oriented pulling from a melt with alloyed impurities, then the impurity
distribution will affect the process of impurity diffusion in the melt as well as in the solid phase. In most
cases [1] diffusion in the solid phase is disregarded. This is not always permissible, however. In many
cases the diffusivity of impurity in the solid phase is of the same order of magnitude as in the liquid phase.
Thus, for instance, the diffusivity of copper in both silicon at 1200°C and in germanium at 850°C is 107® m?
/sec, i.e., of the same order as in the liquid phase. The diffusivity of lithium in silicon and in germanium
under the same conditions is somewhat higher [2]. Evidently, analogous situations are encountered
further in a wide range of technical applications for new materials.

We will consider the problem of impurity diffusion in the solid phase during oriented crystallization
in a crucible of uniform cross section and height h. The problem will be treated in the one-dimensional
formulation. The diffusivity of impurity in the solid phase will be assumed to be a second-degree parabolic
function of the concentration. The crystallization front will be assumed fo progress at a rate which is a
known function of time. The impurity concentration at the crystallization front will be assumed known, It
is determined from the solution to the problem of impurity diffusion in the melt. We will stipulate this
concentration in the form of a third-degree polynomial in the length s of the solid phase.

We will formulate the problem in 2 movable system of coordinates, the origin of which is located
on the crystallization front (Fig. 1):
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Since no solid phase exists yet at the first instant of time, there arise difficulties in formulating the
initial condition — as is the case in many problems of mathematical physics [3]. Impurity diffusion in the '
solid phase will be considered from some instant of time 7, on after crystallization has begun. The solid
phase will then have a attained a definite length s,. For a short time interval 74 we will disregard diffusion
in the solid phase. The initial condition will then be
L 5 px, Tg) = F (s, — ). (4
The location of the m'ovi\ng bowmdary will be determined from the expression

s:so—:-fw(r)dr. (5)
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Fig. 1. Schematic diagram for the problem.

Fig. 2. Relative concentration of impurity along the crystal
height: a) without diffusion in the solid phase; b) with diffusion

in the solid phase,

We solve the problem by the approximate integral method, which is since recently being used for
the solution of problems in heat conduction and diffusion [4-7]. The solution to the problem will be sought

in the form of a third-degree polynomial:
0 = G + % + ax® - age’. (6)

For the solution we formulate an additional boundary condition:
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Using the boundary conditions (2), (3), and (7), one can rewrite the equation of the concentration
profile as
p(x, 1) = F(8) + ay(3s% — 3sx8 - x3). (8)

Coefficient a3 will be determined from the integral of material balance.

For this purpose we multiply both sides of Eq. (1) by dx and integrate from 0 to s. As a result, we
obtain
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The quantity ® is defined by the expression
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Equation (9) will be reduced to the form
da, + D)= (11)

where
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In order to determine a;, we solve Eq. (11).

Denoting the variable of integration by ¢, we obtain a solution to the given problem in the following
form:

p(r, ) =F ()| dexp[— [ C)dp| — [ DW)exp| — jT C(4) db) dp] (352 — 3sx* -+ 29). (12)
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In order to determine a3, we use the condition p(sy, 7g) = by obtained from (4)
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Lef us now examine how the term agexp [— S C()dv] varies when gy tends toward zero. For this purpose
Ty

we consider the solution to the problem with D = const and w = const. Under the given conditions we have
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We then seek the limit
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This limit will be found by the application of 1'Hopital's rule followed by a double differentiation of the
numerator and the denominator with respect to s;. The result is

tim L8 i T8 g
500 @ (Sy) s0=0 §7(8y)

It can be shown analogously that the integrand in formula (12), which confains D(y), tends toward zero as

Y — 0. In this way, the term with ag in (12) drops out and the lower limit of integration in the next term
can be changed from 7, to 0. These results will, evidently, be valid also in the case of variable front
velocity and variable diffusivities. For numerical calculations one may use formula (12), assuming small
values for s, (1.0-1.5% of the final crystal height). Such a procedure may simplify the evaluation of the
integral which containg D(y). Moreover, according toa special analysis, the numerical value of the term
with ag is by a few orders of magnitude smaller than the next term and changing s; in one or another direc-
tion by a quantity smaller than sy has almost no effect on the results of computation.

These formulas were used for calculating the impurity concentration along the height of a crystal
grown from a melt at a constant rate and with constant diffusivity D. The impurity concentration at the
movable boundary was approximated by a first-degree polynomial in s:

0(0, 7)== py(1 4+ 12.5s).

The velocity of the crystallization front was assumed equal to 1.388-10~% m/sec (5 mm/h) and the dif-
fusivity D = 10-% m® /sec, the latter value corresponding to the diffusivity of copper in germanium and in
silicon. The impurity distribution in the solid phase was determined for a crystallized rod of length s,

= 0.08 m. The impurity distribution in the crystal, calculated according to formula (12), is shown in Fig.
2. The dashed line also shown on the same diagram represents the impurity concentration along the erys-
tal height without diffusion in the solid phase. According to these graphs, impurity diffusion in the solid
phase under the given conditions tends to equalize the impurity concentration along the crystal height,

The procedure proposed here for solving the problem without an initial condition can also be used for de-
termining the temperature distribution in the solid phase of a growing crystal, when the law of movement
of the crystallization front is given.
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NOTATION

the time;
the partial density of impurities;

is the diffusivity;
is the velocity of crystallization front;

is the position of movable bomdary,
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