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The one-dimensional  problem of impuri ty diffusion in a var iable- length solid rod is solved 
approximate ly  by the  integral method. Results are  shown of typical calculations on the 
basis of the derived formulas .  

When a c rys ta l  is grown by oriented pulling from a melt with alloyed impuri t ies ,  then the impurity 
distribution will affect the process  of impurity diffusion in the melt as well as in the solid phase. In most  
cases [1] diffusion in the solid phase is d is regarded.  This is not always permiss ib le ,  however.  In many 
cases the diffusivity of impurity in the solid phase is of the same order  of magnitude as in the liquid phase. 
Thus, for instance, the diffusivity of copper in both silicon at 1200~ and in germanium at 850~ is 10 -9 m 2 
/ see ,  i.e., of the same order  as in the liquid phase.  The diffusivity of lithium in silicon and in germanium 
under the same conditions is somewhat higher [2]. Evidently, analogous situations are  encountered 
fur ther  in a wide range of technical applications for new mater ia ls .  

We will consider the problem of impuri ty diffusion in the solid phase during oriented crystal l izat ion 
in a crucible of uniform c ros s  section and height h. The problem wUl be t rea ted  in the one-dimensional  
formulation.  The diffusivity of impurity in the solid phase will be assumed to be a second-degree  parabol ic  
function of the concentrat ion.  The crysta l l izat ion front will be assumed to p rogres s  at a rate which is a 
known function of t ime. The impurity concentration at the crystal l izat ion front will be assumed known. It 
is determined from the solution to the problem of impurity diffusion in the melt. We will stipulate this 
concentration in the form of a th i rd -degree  polynomial in the length s of the solidophase. 

We will formulate  the problem in a movable sys t em of coordinates ,  the origin of which is located 
on the crysta l l izat ion front (Fig. 1): 

at Ox (m + n p  + p,o 2) Ox ' 

p (0, ~) : b o -r bas -~ b~s ~ -" ba s3 : F (s), (2) 

00(s, ~) _ 0. (3) 
Ox 

Since no solid phase exists yet at the f i rs t  instant of t ime, there ar ise  difficulties in formulating the 
initial condition - as is the case in many problems of mathematical  physics [3]. Impurity diffusion in the 
solid phase will be considered f rom some instant of t ime T O on af ter  crysta l l izat ion has begun. The solid 
phase wUl then have a attained a definite length s 0. For  a shor t  t ime interval 7 o we will d i s regard  diffusion 
in the solid phase. The initial condition will then be 

~ P (x, %) = F (s o -- x). (4) 

The location of the moving boundary will be determined f rom the expression 

T 

s = so + .I'. w(~)d~. (5) 
To 
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Fig. 1. Schematic  d iagram for the problem.  

Fig. 2. Relative concentrat ion of impuri ty along the crys ta l  
height: a) without diffusion in the solid phase; b) with diffusion 
in the solid phase.  

We solve the problem by the approximate integral  method, which is s ince recent ly  being used for 
the solution of problems in heat  conduction and diffusion [4-7]. The solution to the problem will be sought 
in the fo rm of a th i rd -degree  polynomial:  

9 = ao + alx + a,, x~ + a.r (6) 

F or  the solution we fo rmu la t e  an additional boundary condition: 

o~o(s, "0 _- o. (7) 
Ox ~ 

Using the boundary conditions (2), (3), and (7), one can rewr i te  the equation of the concentrat ion 
prof i le  as 

O (x, "~) = F (s) + a3(3s2x -- 3sx" + x3). (8) 

Coefficient  a 3 will be de te rmined  f rom the integral of mater ia l  balance.  

For  this purpose we multiply both sides of Eq. (1) by dx and integrate f rom 0 to s. As a resul t ,  we 
obtain 

_ _  _ _ _  [ Op(s, ~) dO cts = m 
dr p(s, x) dr [ Ox 

Op(O,T)] [ OO(s,'O 
Ox + n O (s, ~) Ox 

p(o, "0 00(0, "0 ] 
ax ] 

ap(S.ax ") ,.(0..) ap(0.0x (9) 

The quantity | is defined by the express ion  

$ 

0 = 3 9dx = sF (s) azs a. 

o 

(10) 

Equation (9) will be reduced to the fo rm 

where  

da3 :' C(x)a  a q- D(x) -----0, 
dz 

(11) 

C (x) = 4 {sw + m + nF (s) + p [F (s)]*} . 
SU D ('r) = 4ww_ (b x + 2b~s + 3bas~). 

3s ~ 
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In o rde r  to de te rmine  a~, we solve Eq. (11). 

Denoting the var iable  of integration by r we obtain a solution to the given problem in the following 
form:  

p(x. , ) =  P (s)-:-( ~exp 1-- S C (qJ) d,]  -- jT D (,)exp [ - -  j~' C (%b)dqJ] d,J ( 3 s 2 x _  3sx ~. _~ x3). 
'~o "go 

In o rde r  to de te rmine  a ~ 3, we use the condition O(s0, r0) = b0 obtained f rom (4) 

- sg  ~ " + G �9 
S O 

Let  us now examine how the t e r m  a~exp [- j" C(r var ies  when s o tends toward zero.  For  this purpose 
To 

we consider  the solution to the problem with D = const and w = const. Under the given conditions we have 

i ' C ( q ~ ) d ~ = 4 [ l n  s~_aso +_w_ . s o D  (1  sh.1 1 
To 

(12) 

We then seek the l imit  

( b 1 b., ') 

[ i "~ , so2 s o =liml<(so) l im!a ~ -- C(,)d~p i I =  Iim 
TD 

S h 

exp!4 In sh -~ D I 
S o r23 , S O 

This l imit  will be found by the application of l 'Hopt ta l ' s  rule  followed by a double different iat ion of the 
numera to r  and the denominator  with respec t  to s 0. The resu l t  is 

lira [(so) = lira ['(so).- = O. 
So-0 ~(s0) so~0 ~'(s0) 

It can be shown analogously that the integrand in formula  (12), which contains D($), tends toward zero as 
r ~ 0. In this way, the t e r m  witha~ in (12) drops out and the lower l imi t  of integration in the next t e r m  
can be changed f rom ~0 to 0. These  resu l t s  will, evidently, be valid also in the case of var iable  front 
veloci ty and var iable  diffusivit ies.  For  numer ica l  calculations one may use formula  (12), assuming small  
values for  s o (1.0-1.5% of the final c rys ta l  height). Such a p rocedure  may simplify the evaluation of the 
Integral which contains D(r Moreover ,  according to a special analysis ,  the numer ica l  value of the t e rm 
with a ~ is by a few o rde r s  of magnitude sma l l e r  than the next t e r m  and changing s o in one or another  d i r e c -  
tion by a quantity sma l l e r  than s o has a lmost  no effect  on the resul ts  of computation. 

These  formulas  were  used for  calculating the impuri ty eoncentrat ion along the height of a crys ta l  
grown f rom a melt  at a constant ra te  and with constant diffusivity D. The impuri ty concentrat ion at the 
movable boundary was approximated by a f i r s t - d eg ree  polynomial in s: 

p(0, ~) = ,%(I + 12.5s). 

The veloci ty of the crys ta l l iza t ion front  was assumed equal to 1.388 �9 10 -6 m / s e c  (5 ram/h)  and the dif-  
fusivi ty D = 10 -9 m 2 / s ee ,  the l a t t e r  value corresponding to the diffusivity of copper in germanium and in 
silicon. The impur i ty  distr ibution in the solid phase was de te rmined  for  a c rys ta l l ized  rod of length s c 
= 0.08 m. The impuri ty  distr ibution in the c rys ta l ,  calculated according to formula  (12), is shown in Fig. 
2. The dashed line also shown on the same diagram represen t s  the impuri ty concentrat ion along the c r y s -  
tal  height without diffusion in the solid phase.  According to these graphs ,  impuri ty  diffusion in the solid 
phase under the given conditions tends to equalize the impuri ty concentrat ion along the c rys ta l  height. 
The p rocedure  proposed  he re  for  solving the problem without an initial condition can also be used for  de-  
t e rmin ing  the t empera tu re  distr ibution in the solid phase of a growing crys ta l ,  when the law of movement 
of the crys ta l l iza t ion  front  is given. 
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is the time; 
is the partial density of impurities; 
is the diffusivity; 
is the velocity of crystallizatiou front; 
is the position of movable botmdary. 
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